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A localized-basis scheme for molecular dynamics 
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Institut E r  Festfiqmfonchung, Forschungszenwm Jitlich GmbH, D-5170 Jitlich, 
Federal Republic of Germany 

Received 7 October 1992 

AbstracL ?he combination of molecular dynamics and density-functional theory 
introduced by Car and Paninello (cp) has broadened very markedly the mnge of systems 
and properties that can be treated on a fint-principles basis. ?he cp formulation involves 
plane-wave expansions for wavefunctions and polentials and is best suited when lhe 
atoms c m  be represented ty weak pseudopotentials. An allemative approach employs 
expansions in localized orbitals and may prove advantageous %here strong polentials are 
encounlered. I h e  approach derives forces f” a density functional dosely relared to 
the KohnSham hunnional but de6ned rigorously on function space, in parlicular for a 
sum of site densitis. This simplifies force ralculation substantially. The site densities 
are represented via a density basis and Ihe orbitals by an orbital basis of aponentialfy 
localized A-functions whose exponents are optimized dynamically. The potential of 
the approach h demonslraled via explicit calculations, including moleculardynamics 
simulations for hydrogen dusters. 

1. Intmduction 

The molecular-dynamics-density-functional method (MD-DF) of Car and Paninello 
(1985) (e) involves two essential elements. (i) The potential, E[R;] ,  that governs 
the nuclear motion is taken to be the density functional of Kohn and Sham (1%5), 
Em[n(z) ,Ri ] .  Here, R, are the nuclear locations and n(z) the electron density. 
This functional obeys an absolute minimum principle and its minimum value for 
a given set of Ri is a best estimate of the electronic ground-state energy for 
these 22; and so represents a point on the adiabatic energy surface for the nuclear 
motion. (ii) The minimum property is maintained during an MD simulation via 
dynamical propagation of electronic degrees of freedom on a timescale that is fast 
compared with the nuclear motion. Heavy-mass nuclear degrees of freedom and 
light-mass electronic degrees of freedom are propagated together according to the 
laws of classical mechanics in such a way as to maintain the energy functional 
close to its minimum value. The forces acting on the nuclei then correspond to 
the adiabatic energy surface. The resulting alculational scheme combines the full 
p e r  of molecular-dynamics methods, developed Over many years for system that 
are characterized by simple interactions such as painvise sums, with a first-principles 
(though approximate) determination of the relevant forces in systems with chemical 
interactions. 

Because of its simplicity, accuracy and ease of implementation, the plane- 
wave method is clearly the method of choice for atoms representable by weak 
pseudopotentiah. For most atoms of the periodic table this requires a separation 
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of the wavefunctions into ‘stiff’ and ‘soft’ parts, with only the latter described by 
plane waves in conjunction with ’soft pseudopotentials’ (Vanderbilt 1990). Where 
strong potentials are encountered, expansions in sitelocalized functions rather than 
plane waves would seem more appropriate. Such expansions are universal in quantum 
chemistry and quantum-chemistry-based density-functional work on molecules, and a 
variety of localized or partially localized functions of varying degrees of sophistication 
(e.g. muffin-tin orbitals, augmented plane waves) have been used in solid-state and 
film calculations. These methods are, however, tailored to accurate pointwise energy 
evaluation rather than the fast calculation of forces. Since site-localized orbitals 
move with the nuclei, the basis changes as the nuclear positions change resulting in 
Tulay forces’ whose computation can be exceedingly time consuming. An orbital 
basis designed for accurate energy evaluation may therefore be poorly adapted to 
force computation. Any successful localized basis MD scheme must place the focus 
the other way around with the main emphasis on fast force calculation, if necessary at 
the expense of accurate energy evaluation. Some localized-basis schemes have been 
proposed that are adapted to the specific requirements of MD (Seifert et nl 1986, 
Pederson et a1 1988, Sankey and Niklewski 1989). These schemes appear to give 
good results in practice, but involve approximations whose consequences are not easy 
to assess and that restrict possibilities for systematic improvement In the present 
paper, we describe a localized-basis m scheme that also involves approximations but 
is considerably less restrictive with regard to accuracy and flexibility. Some elements 
of the scheme as it applies to systems having a single electronic level have been 
outlined previously (Harris and Hohl 1990). The present paper deals with the many- 
level problem and extends the scheme so that it applies, potentially, to an arbitrary 
collection of atoms. The method is based on a density functional that is closely 
related to the KohnSham functional, but is defined on function space with no ‘V- 
representabdity’ requirement (Harris 1985). This is discussed in section 2 along with 
some other basic elemenrs of the method. The orbital basis we advocate as optimizing 
accuracy and ease of calculation-the A-functions (Filter and Steinborn 1980, Ttivedi 
and Steinborn 1982)-is described in section 3, where we discuss the evaluation of 
matrix elements needed for the forces and the energy. Mathematical details, including 
modscations to treat frozen cores, are treated collectively in the appendices. The 
relative accuracy of the scheme is discussed in section 4 in connection with explicit 
calculations for fist-row homonuclear dimers. The practicality of the MD scheme is 
then demonstrated in section 5, where we give results of simulations carried out with 
collections of 16 and 128 H atoms confined in a box. 

Zijing Lin and J Harris 

2. Basic dements 

The cp scheme draws adiabatic forces from the Kohn-Sham functional 

where the an are occupation numbers, &,l(z) is the Coulomb potential associated 
with density nWl(z), E J ~ ]  is the local-density approximation (LDA) exchange 
correlation energy density, V, is the nuclear potential, EN the internuclear repulsion, 
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and E, are the eigenvalues of the one-particle Schrodinger equation with potential 
l&(z). The density n,,,(z) is constructed from the occupied orbitals of this 
equation as usual. In the m planewave method these orbitals are expanded in plane 
waves and the coeflicients are treated as classical dynamical variables having a small 
mass. Propagation of these variables along with the nuclear mrdinates and under 
appropriate conditions allows maintenance of adiabaticity where the functional in 
equation (1) is kept at or close to its local minimum. The crucial advantage of plane 
waves is the availability of fast-Fourier-transform routines whose lime requirement 
grows essentially linearly with vector length. 

The alternative approach we propose takes as its starting point a density 
functional, E[n],  that is closely related to the Kohn-Sham functional but has some 
advantages if the basis used to solve the one-particle SchrWinger equation consists 
of localized orbitals (Harris 1985, Foulkes and Haydock 1989). E[n] is stationary 
at the same density as EIcs[n] but, unlike this functional, can be assigned a value 
for an arbitrary density, in particular a density constructed by summing spherically 
symmetric site densities centred on the atoms. Specifically, 

where ps( n )  E d(nc,)/dn is the exchange-correlation potential and the eigenvalues 
Zn are those resulting when the one-particle Schrodinger equation is solved with 
potential 

K(Z) = #(z) + P,[n(z)l t VAS).  (3) 

TO mluate  E[n] for given n(z) and Rj it is necessary only to calculate the 
eigenvalues for a specific oneparticle potential. The eigenvectors do not appear 
explicitly in the energy expression and, in particular, the Coulomb potential 
corresponding to these eigenvectors need not be calculated. This is an important 
advantage when the orbital basis is localized because the calculation of the 
electrostatic energy corresponding to the 'out density' then requires four-centre 
integrals. Wis problem is eliminated entirely on using E[n] in connection with an 
appropriately tailored density representation such as a sum over spherically symmetric 
site densities, for which the evaluation of the electrostatic energy is straightfonvard. 
A number of calculations have illustrated that the quadratic error made in using E[n] 
in conjunction with a sum over site densities can be small, and that the value of E[n] 
about its stationary point depends only weakly on deviations of n from its optimum 
value (Polatoglou and Methfessel 1988, 1990, Read and Needs 1989, Fmnis 1990). 

A further property of E[n] that is vital to its usefulness in MD was conjectured 
by Finnis (1990) on the basis of calculational experience. This is that for a wide 
class of density variations, in particular including sums over spherically symmetric 
site densities, E[n] displays a maximum at its stationary point. The stationarity 
properties of E[n] were studied in detail by Zaremba (1990) and considered further 
by Robertson and Rrid (1991). This work established that, within the IDA, E[n] 
displays a saddle point at its extremum and has positive and negative curvature for 
density fluctuations consisting primarily of long- and short-wavelength components. 
The cross-over in sign of the curvature is due to the LDA exchange-correlation energy 
outweighing the electrostatic energy at short wavelengths. It is of course vital for MD 
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applications that the sign of the curvature of E about its stationary point remain 
constant. This can be negative or positive but must not switch lrom one to the other 
during a simulation. Fortunately, the region of density space over which a positive 
curvature (dominance of the electrostatic energy) can be guaranteed is large and 
restrictions that ensure that trial densities remain withiin this region are minor. That 
E[n]  has a saddle point rather than an absolute maximum therefore implies only 
some limitations on the degree to which trial densities can be fine tuned. 

Variation of the density to ensure E[n] is close to its stationary point can be 
carried out dynamically in the CP spirit via the following procedure. Restrict the trial 
density to a sum over sites of the form 

4.1 = .x.(l. - 41) (4) 
i 

where nX,(z) is a spherically symmetric site density depending on a parameter X i .  
This is the simplest possible case, and it is quite straightfonvard to generalize the 
representation, e.g. several parameters per site, weighting factors that take account of 
charge transfer, non-spherical terms or ‘empty site’ densities that describe intra-atomic 
polarization. The variational freedom of the density representation is restricted only 
by the requirement that the electmstatic cost of any variation exceed the exchange 
correlation gain. Since the functional E[n] is extremely flat about its stationary point 
a simple representation like equation (4) is less limiting than may be supposed (see 
section 4). For simplicity of notation we will denote all parameters pertaining to 
site density i by the single symbol X i .  Within this restricted space, the functional 
E[n] goes over to a function, E(&,  R;),  of discrete variables comprising the uial 
density parameters and the nuclear coordinates. Adiabatic MD calculations can then 
be carried out on treating the X i  as dynamical variables having a negative mass - M A ,  
so that they will he driven continuously towards the maximum of E. If a simulation 
is started with optimal (or ‘adiabatic’) X i  values, corresponding to the maximum of 
E( X i ,  RY) for the initial nuclear coordinates, By, and if the natural frequency of the 
X motion is larger than that of the nuclear motion (achieved via tuning of the mass 
ratio), the X i  will oscillate on a short timescale about their local adiabatic values so 
that the forces acting on the nuclei are always very close to the values they would 
have if E[n] were maximized in every time step. (The principle is precisely that 
which pins the moon to the earth as both perform the same orbit around the sun.) 
Dynamical maintenance of adiabaticity amounts, in density-functional language, to 
automatic maintenance of ‘self-consistency’. 

The evaluation of energy and force requires the determination in each time step 
of the occupied eigenvalues and eigenvectors of a one-particle Schrodinger equation. 
As mentioned, sophisticated methods have been developed over the past decade to 
treat this problem, but are poorly adapted to force calculation. Accordingly, we take 
a step backwards and invoke a representation of the eigenvectors of the n o  (linear 
combination of atomic orbitals) form, involving site-localized orbitals 1;) depending 
on exponent parameters ai. We postpone a detailed consideration of the form these 
functions should take and note here how the remaining parts of the localized-basis 
MD scheme are addressed. Within the basis defined by li), the eigenvectors of the 
Schrddinger equation are represented by the coefficients C? that solve the matrix 
eigenvalue problem 

{ H . . - E n O i j ) C j n  :t = o  H . .  i l  = ( i I T t  V J j )  Oij  =(ilj) (5) 
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where 'f' is the kinetic energy of the electrons, V, the potential in equation (3) 
evaluated with the sum over sites density, equation (4), and where a sum 
over repeated indices b assumed (as in all following equations). In the same 
representation, the energy functional E[n] takes the form 

x { f+(z) + . 4 n ( z ) l -  4 4 z ) l }  + EN (6) 

where 6 ,  I a n / [ C : O i j C f ]  and n(z) is the density in equation (4). The energy now 
depends on a further set of discrete variables, the exponents, ai, of the orbitals li). 
Since the only term in the energy which depends on these parameters is the ground- 
state energy of non-interacting electrons in a ked potential, E( A;, ai, R;) obeys a 
global m i n i u m  with respect to variation of the a;. In {&,a i }  space, therefore, E 
displays a saddle point characterized hy positive and negative CUNature with respect to 
X i  and ai, respectively. If the exponent$ are now regarded as dynamical variables and 
given a positive mass, Me,, their propagation together with negativemass X i  degrees 
of freedom will result in the continuous maintenance of E at its local saddle point. 
This amounts to automatic 'self-consistency' and 'orbital exponent optimization'. 

.C[R,, ki, X i ,  A i ,  a;, 4 
Adiabatic dynamics can then be achieved by using the Lagrangian 

along with an appropriate choice for the auxiliary masses that ensure the X and Q 

motion is faster than the motion of the nuclear coordinates. The equations of motion, 

involve forces that are readily determined by direct differentiation of E(X,, a j ,R i ) .  
The X and a forces are given by 

where the derivatives of Hij and O;, are zero unless IC = i, j because the potential 
in the one-particle Schriidinger equation b independent of the a,. The forces on 
the nuclei comprise three terms, 

VR, E (  A; I a; I Ri) = zkvRh @ A ,  (IRb - Ri I) + 
i n 

6-c;" (ilvRkvaki)cj" 

- ldx n(z)vRkVn(z) + 
n 

x {q(VR,ICIA- €,Ij)Cj" + CCi"(i1A - €,IvR,rc)c;}. (10) 
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Here QA$(1lZh - Ril) is the net electrostatic potential at the nucleus of site k, R,, 
having nuclear charge Z,, due to the nucleus and the site density n X ; ( z i )  for site i. 
The first term in equation (10) therefore gives purely repulsive HeUman-Feynman- 
like pair forces. The second term arises because the trial density and output density 
do not coincide and can be rewritten 

Zijing Lin and J Hanis 

(11) 

where 

a 

is the output density from the solution of the Schrodinger equation. The density 
parameter forces in equation (9) can be written in similar form 

which makes explicit the vanishing of these forces when the trial density and output 
density coincide. (A pointwise coincidence will not occur if n(z) has the form in 
equation (4) and the vanishing of the X forces is due to the equivalence of integrals, 
i.e. an optimization of the mismatch of the ‘in’ and ‘out? densities.) The third term 
in equation (10) gives the Pulay forces, which express the dependence of the orbital 
hasis on the nuclear positions. 

In practice, it is 
advantageous to eliminate the cores either by use of a pseudopotential or via a 
frozenare approximation. In the former case the pseudopotential replaces the 
nuclear potential and the above results hold with minor modScations. In the latter 
case, the functional in equation (2) must be converted into one for the valence 
density alone and the force formula (10) acquires additional terms that express the 
orthogonalization of the valence orbitals to the frozen-core orbitals. Details are given 
in appendix 1. 

Maintenance of adiabaticity by dynamical propagation would normally be expected 
to gain in efficiency compared with direct maxi”tion/minimization methods- 
steepest descent or conjugate gradient-the larger the number of variables involved. 
However, direct methods may be preferable if the time step needed to integrate the 
A, a motion is considerably shorter than the natural time step dictated by the nuclear 
motion, or if the nuclear trajectories can be propagated over many time s t e p  without 
upgrading X and a. This is a matter of gaining experience with the application under 
study. 

The advocacy of a scheme that requires solution of a matrix eigenvalue problem 
in each time step may seem retrograde as compared with the plane-wave method of 
CP. However, within an approach based on orbitals, some procedure must establish 
the orthogonality property required for fermions. In the CP method, this is achieved 
via constraints within the Lagrangian whose imposition involves essentially the same 
computational cost as a matrix diagonalization. The difference in the present scheme 
is that the matrix involved has rank equal to the number of basis functions whereas 
in the CP method this is the number of occupied orbitals. This disadvantage may be 

These force formulae refer to an ‘all-electron’ calculation. 
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compensated for by savings in the reduction in the number of dynamical variables 
that m a t  be propagated and the possibility to use much larger time steps during 
progagation without significant departures from adiabaticity. Several methods have 
been proposed for circumventing computational steps that are manifestly non-linear 
in the system size (see, for example, Baroni and Gianozzi 1992). Such methods are 
certainly imperative in connection with very large systems, of which there are an 
infinite number. However, the number of potential MD applications that refer to 
systems of moderate size, where the ultimate scaling behaviour of the method is not 
a determining factor, is also essentially infinite. The mu requirement of the present 
method will ordinarily be determined by the evaluation of the matrix elements and 
not the diagonalization of the matrix. Since the basis is localized, this step scales as 
N 3  for N < M and N M Z  for N > M, where M is proportional to the number 
of basis functions per site times the number of neighbours for which the overlap is 
non-vanishing. 

- 

3. The bask matrix element evaluation 

As the above discussion makes clear, it is important that the representation of 
the solutions of the Schrodinger equation be kept as compact as possible. The 
‘fireball’ basis introduced by Sankey and Nklewski (1989) where atomic orbitals 
are renormalized to vanish at a fixed radius is an ingenious choice and has the 
important advantage of truncating the Hamiltonian and overlap matrices drastically. 

and the use of numerical basis functions that limits the number of steps that can 
be taken analytically. We have chosen a more conventional route and use analytic 
functions that can be translated analytically for the purpose of integral evaluation. 
Gaussians obey the simplest translation theorems and suitable contracted Gaussian 
orbitals could be used in the present context We have chosen instead to use 
exponential A-functions, as described in detail by ’llivedi and Steinborn (1982), 

- The disadvantages are a lack of flexibility and possibility for systematic improvement 

AnL(a,R)  I N, , (a ) r ’L~~-+: - l [+ ]e -= / zYL(  8) (14) 

where I = ZalRI, N,,(a) is a normalization constant, L i ( X )  an associated 
Laguerre polynomial and Yr. a spherical harmonic with label L = 1,m. These 
functions form a complete, wthonormal set of site-localized functions and are linearly 
related to the set of Slater-type orbitals (SMS) (which is complete but not orthogonal). 
Their suitability within the present context devolves from the existence of a global 
(‘one-range’) expansion theorem of the form 

where the S,”y[a, Rj i ]  are structure constants depending on the translation vector, 
Rji Rj - Ri, between sites and vi I T - R, is a point in space referred to the 
location of site i. Specifically, the structure constants are given by 
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where the coefficients C are independent of the atom locations. Unlike analogous 
expansions for other localized functions, which display pronounced oscillations, the 
A-function expansion has excellent pointwise convergence properties, allowing two- 
centre integrals to be reduced to a relatively small number of onecentre integrals. 
All overlap elements and matrix elements of the kinetic energy taken with the A- 
functions or their derivatives can be performed efficiently with the aid of the expansion 
theorems, as detailed in appendix 2 

The remaining matrix elements that must be calculated involve the Coulomb and 
exchangecorrelation potentials, which we consider separately. Since the trial density 
is a sum over site densities, the associated Coulomb potential is also a sum over sites, 

Zijing Lin and J H Q ~ S  

i 

so the required matrix elements can be \nitten as sums of two- and three-centre 
integrals, eg. 

with the k-sum running over sites i and j and neighbouring sites. All integrals 
are then converted to sums of onecentre integrals using the expansion theorems to 
translate i to j, j to i, or i and j to k. Since the site potentials are spherically 
symmetric, the resulting integrals are onedimensional and the sums of structure 
constants involved are correspondingly truncated. In addition, all singularities in the 
potential occur at the origin of coordinates and are taken care of hy the volume 
element. Details with regard to three-centre integrals are given in appendix 3. 

Matrix elements of the exchangecorrelation potential, e.g. ( i / p = / j ) ,  offer the 
most resistance to efficient computation because p,(z) behaves like [xi  nx, (z i ) ] ' /3  
and cannot be written exactly as a sum over sites. Sankey and NiWewski (1989) found 
an approximation procedure that seems to be relatively accurate but may fail if low 
densities at a bond centre are encountered. We believe that an alternative method 
will prove more accurate in general. This is similar in spirit to a procedure suggested 
by Jones (1988) and involves fitting the functional dependence of ~ ~ ( n )  and p=(n)  
to a polynomial in n, 

The property pa = d[nc,]/dn is preserved and the coefficients a", a t , .  . . should be 
chosen to optimize the density dependence of both cre and ps. It is advantageous 
to choose the mefficients so that the lower-order terms carry the main weight even 
if this results in a slightly worse fit than a free variation of the parameters. This is 
because matrix element contributions from the zeroth and first terms can be evaluated 
exactly while for higher-order terms approximations must be used. The series must 
be carried to at least quadratic order to guarantee a stable simulation and this vias 
found to be adequate for hydrogen systems at not too large or small density. In 
general, higher-order terms will be necessary. 

In conjunction with a sum over site density and a polynomial approximation, 
matrix elements of pn: involve sums of multi-centre integrals. These can be arranged 
(roughly) as a power series in the overlap of orbitals centred on adjacent sites and 
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evaluated at several levels of approximation. The simplest level, which we expect to 
be adequate in general, involves at worst three-centre integrals of the same form as 
those which contribute to the electrostatic matrix elements. Higher-order terms can 
be included if necessary via factorization formulae whose accuracy improves the larger 
the contribution made. Details are given in appendix 4. The use of an approximation 
for the exchange-mrrelation matrix elements was anticipated in the force formulae 
in equations (9) and (IO), which remain exact derivatives of the energy expression 
in equation (6)  whatever approximations are made for the matrix elements (provided 
only that these are made consistently in energy and force). The only consequence 
of matrix element approximations is that the X forces determining the motion of the 
density parameters do not vanish exactly at the point where n,(z) = n(z). 

The evaluation of the energy in equation (6) is greatly facilitated by the spherical 
symmetry of the site densities and their associated Coulomb potentials. For H and 
first-row elements, a site-density representation in terms of A-functions is sufficiently 
accurate and the electrostatic energy then can be calculated analytically. If numerical 
site densities are used, one-dimensional onecentre and two-dimensional two-centre 
integrals must be performed by numerical quadrature, e.g. in elliptic coordinates. 
The exchange-mrrelation energy requires a sum of threedimensional integrals with 
integrands n x , ( i t ) ( p = [ n ]  - c.Jn]). which can be treated in a similar way as the 
corresponding Hamiltonian matrix elements calculation. The energy need not be 
calculated in every time step so its evaluation contributes negligibly to the CPU 
cost of a simulation, which is determined primarily by the three-centre integrals 
that contribute to the Hamiltonian matrix and to the Pulay forces in equation (IO). 
Evaluation of the Pulay forces is a difiicult step in all localized-basis schemes. In 
the present scheme, crucial advantage accrus from the expansion theorems obeyed 
by the A-functions. Matrix elements contributing to the Pulay forces involve the 
gradients of the basis functions and can be evaluated using the expansion formulae, 

This means that the Hamiltonian and Pulay matrix elements are evaluated in parallel, 
which combines calculational efficiency with maintenance of strictly equivalent 
numerical errors due to truncation of the expansion series. 

4. Discussion of basis adequacy 

The accuracy of the nuclear forces in equation (IO) as compared with the derivatives 
of the exact KohnSham energy depends on the adequacy of the orbital basis of A- 
functions together with the density representation in equation (4). Since A-functions 
are basically STOS, the number required to attain basis convergence is well lolown 
and our experience confirms that WO functions per atomic orbital (‘double zeta’) are 
necessary and sufficient. The consequences of a sum Over sites approximation for 
the density in conjunction with the functional in equation (2) are less clear U priori, 
and remain to be established. There is considerable evidence that this is a much 
better approximation than it might appear. Correspondence with full Kohn-Sham 
calculations for selected dimers (Harris 1985), bulk solids (Polatoglou and Methfessel 
1988, 1990) and surfaces and vacancies (Finnis 1990), was quite favourable. Since the 
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actual ground-state density of any chemically interacting system must deviate quite 
markedly from a sum of spherically symmetric atomcentred site densities, this can be 
taken as an indication that the density functional in equation (2) is quite flat about 
its stationary point The reason has been discussed in terms of the expression for 
the curvature of E[n] in terms of the trial density (‘in’) and the ‘out’ density given 
by the Schrodinger equation (Finnis 1990) and is related to the inherent instability 
of the self-consistency cycle whereby the Kohn-Sham equations are usually solved. 
This instability is apparent at the atomic level. If the start density used to construct 
the initial trial potential for the atom is somewhat too contracted with respect to the 
mrrect atom density, the nuclear potential will be too strongly screened and the ‘out’ 
density will ‘overshoot’ and be much too expanded. If this is used as an ‘in’ density, 
the next ‘out’ density will be far too contracted, and so on. Stable iterations result 
only if this oscillation is damped out by feeding back only a small fraction of the ‘out’ 
density in each iteration. ‘Overshooting’ magnifies the error made if the Kohn-Sham 
functional is evaluated on a ‘one-pass’ bask using a potential constructed from some 
assumed start density, but does not occur in connection with the density functional 
in equation (2), where the Coulomb potential used in energy and force evaluation is 
that due to the trial density itself and not to the ‘out’ density from the Schrodinger 
equation . This is the reason why equation (2) gives a reasonably accurate energy in 
conjunction with a trial density that may be quite far from the correct density and 
which, if used in a ‘one-pass’ evaluation of the Kohn-Sham functional, may lead to 
unacceptable error. 

The kind of accuracy that can be achieved with a sum over spherically symmetric 
site densities in system displaying different bonding characteristics is illustrated in 
table 1, where we show calculations of spectroscopic parameters of the first-row 
dimers Li, to F2. These are compared with standard KohnSham calculations and 
with measured values. The column marked PA gives the results of Painter and Averill 
(1982), obtained via direct minimization of the Kohn-Sham functional, equation (l), 
using an extensive Gaussian orbital basis. Since the stationary points of the Kohn- 
Sham functional are formally identical to those of equation (2), differences between 
the two sets of theoretical results can be attributed to orbital or the density basis 
error (or both) in equation (6), or to non-convergence of the Gaussian orbital basis 
of PA The experimental values in table 1 are those quoted by PA and are included to 
give a measure of the overall accuracy that can be achieved in LDA calculations (and 
so the level of accuracy it makes Sense to aim at in the theory). 

Zijing Lin and I Hanis 

l h b k  1. Spectroscopic parameten of fkst-m dimers. Campalison 01 present results 
wilh Painter and Averill (1982) and with experimental values. 

Dimer E b  (ev) R ( a 4  we (mev) 

Equation (6) PA Fxp. Equation (6) PA Exp. Equation (6) PA Exp. 

U2 1.32 1.01 1.03 5.24 5.12 5.05 43 43 44 
Be2 0.58 aso 0.10 4.65 4.63 4.71 45 4 4 3 6  
Bz 412 3.93 290 3.04 3.03 3.04 133 134 U0 
c2 8.00 7.19 6.20 2 3 4  236 235 240 232 230 
N2 11.52 11.34 9.91 208 208 207 288 296 292 
9 7.77 7.54 5.20 235 231 228 191 194 196 
Fz 4.09 3.32 1.65 268 2.62 2.68 132 133 111 
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The results marked ‘equation (6)’ in table 1 were obtained with the use of 
an orbital basis consisting of two functions per atomic orbital (‘double zeta’) plus 
’polarization functions’ (‘atom unoccupied’ p or d functions) and are essentially orbital 
basis converged (by which is meant that selected control calculations using further 
orbitals changed the binding energy by < 0.1 eV). The polarization functions included 
in the basis influenced results most strongly for Liz and &, which we discuss below. 
In other cases, the energy shifted downwards almost rigidly by a small amount (e.g. 
U 0.4, 0.7, 0.4 eV for G-0,). The density was constructed as in equation (4) with 
the site density represented by two exponentials, one each for the core and wlence 
densities. The exponents were determined via the maximum property of the density 
functional in equation (6), which was found to be very well fulfilled in all cases. 
Comparison with independent, purely numerical atom calculations using the Kohn- 
Sham functional showed that atom energies calculated with equation (6) and the 
basis indicated above were given to better than 0.1 eV (ie. -O.ooS%). This shows 
that a representation of the atom densities as the the sum of two A-functions gives 
negligible error in the atom’s energy so that the main source of error in the dimer 
calculations devolves &om restrictions on the trial density that arise because of the 
form of equation (4). (A spherically symmetric site density is inherently restrictive for 
the dimer but not for a central-field atom.) Assuming PA’S results are welt converged 
in orbital basis, the differences between the results in the first two columns of table 1 
reflect inaccuracies in the density representation. Since these would be expected to 
yield too low a dimer energy, the binding energies found in the present calculations 
should be larger than those of PA, which is a consistent trend. 

In general, correspondence with PA’S equilibrium separations and vibration 
frequencies is excellent This indicates that the energy balance within dimer bonds 
with bond orders ranging from 0 (Be,) to 3 p,), and ?r as well as U character, 
is described almost perfectly in all cases, despite the spherical site densities used 
in equation (6). The present results for 5, N, and F2 are significantly closer to 
the results of PA than earlier results obtained using unmodified atom densities as 
site density in equation (4) and an orbital basis of muffin-tin orbitals (MMs) (Harris 
1985). Since the present calculations gave lower binding energies, the systematically 
improved agreement with PA’S equilibrium separations and vibration frequencies is due 
more to an improvement in orbital basis on going from m0.s to A-functions than to 
flexibility m the density basis. The comparison of theoretical and experimental Re 
and we in table 1 shows that the use of a simple density respresentation in conjunction 
with equation (6) does not imply any significant loss of accuracy as compared with a 
full solution of the Kohn-Sham equations with regard to intramolecular properties. 

Limitations of the density representation are apparent, however, in the binding 
energies. Significant differences with PA are apparent for Li,, F, and G. In the case 
of C, we find a more strongly bound molecule with a slightly smaller equilibrium 
separation and stiffer force constant. This may be due in part to inaccuracy of the 
density basis for the 7r4 ground state, but could also suggest that PA’S Gaussian basis 
calculation may not be quite converged in this case. Li, and Fz are, more clear-cut. 
Here, the too large binding energy k associated with a bond that is longer than PA’S, 
and with a difference that is significantly larger than is typical (-0.1 au compared 
with a typical 0.02 au). It is unlikely that these concomitant discrepancies can be 
due to orbital basis inadequacies (in either calculation) and we believe they reflect 
limitations in our density basis. It is striking that the largest discrepancy in E,, by far, 
a 30% difference, is for the simplest dimer, Li,, while the smallest is for the triple 

- 
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TU bond of N,, whose density one might have thought would be hardest to represent 
with a simple site sum. In fact, a sum of atom-centred spherically symmetric site 
densities can describe a charge build-up at the bond centre that is controllable to 
some extent through the range of the site densities. What cannot be described is a 
polarization of the dimer density in the region close to the nuclei. Such polarization 
effects occur for all dimers, but are particularly large in the case of Liz, for which the 
inclusion of p polarization functions in the orbital basis lowers the binding energy by 

0.4 eV, or 40%. An equivalent figure for H, would be - 0.05 eV, or I%, and the 
difference reflects the readiness of the Li atomic potential to support a 2p level (cf. 
the reason why Be, is not a Van der Waals dimer). Results for the bond of F, differ 
from those of PA in the same way as for Liz, presumably for the same reason. 

As pointed out in section 2, the trial density can take account of intra-atomic 
density polarization if p contribtions on each site are included, or by use of 
appropriately located 'empty-site' densities. Errors arising from this effect cannot, 
however, be 'traded OF by linking the inability of the trial density to polarize to a 
concomitant limitation in the orbital basis. This gives an energy change of opposite 
sign, but the two basis errors are insufficiently closely coupled to give a systematic 
cancellation. In practice, the error in the intramolecular properties Re and U, (and 
so the forces operating in the molecular state) became systematically smaller the more 
extensive the orbital basis, regardless of the absolute value of the energy. This suggests 
that the restrictions devolving from the use of equation (4) for the trial density will 
turn out to be relatively minor within any local minimum of the energy surface, 
but may be important with regard to the difference in energy between local minima 
that correspond to radically different bonding situations. In fact, such differences 
are in any event given rather poorly by the IDA, as is clear in table 1. With the 
exception of Li,, the difference between the theoretical values of the binding energy 
is less than the differences between either and measured values. In recent years, IDA 
correction procedures involving gradients of the density (e.g. Perdew 1986, Becke 
1991) have been proposed that appear to improve absolute energies systematically 
and substantially. Such corrections can be very easily built into the present scheme 
because of the simplicity of the density representation. This remains true even if p 
wave site density contributions are necessary. 

The results shown in table 1 refer to all-electron calculations, but very similar 
parameters were obtained within the frozencore formulation (appendix 1). For 
example, the largest difference in binding energy was for N,, where the frozen-core 
approximation gave 11.29 eV as compared with the 11.52 eV in the all-electron case. 
In frozenare calculations, the core orbital was represented by a single A-function 
and valenceare orthogonality treated as detailed in equation (A1.2). The basis used 
to describe the valence orbitals could then be taken to have one less Is A-function 
than for the all-electron case. Both frozen-core functionals, equations (Al.1) and 
(A1.4), gave very similar results, indicating that a complete decoupling of valence 
and core as in equation (A1.4) involves negligible error. This is advantageous with 
regard to exchangecorrelation matrix element evaluation because the valence charge 
density is much smaller than the total density so that the series in equation (19) can 
be truncated in lower order. 

Zjing Lin and J Harris 

5. Molecular dynamics simulations for hydrogen clusters 

In previous work (Harris and Hohl 1990) the MD features implied by equations (7')- 
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(10) were illustrated for the vibrations of a single & molecule. We now extend this 
work to treat clusters of hydrogen atoms with 16 and 128 atoms. These calculations 
represent the first steps in a systematic application of the method to the structure 
and dynamics of hydrogen under pressure. The results of this study will be reported 
elsewhere and our aim here in presenting preliminary data is just to illustrate how 
our MD scheme works in practice. The protons will be treated as classical particles 
and no attempt will be made to account for the ineuence quantum proton dynamics 
may have on behaviour. 

For hydrogen systems, the site densities in equation (4) can be taken to be single 
exponentials, 

(21) 
A3 

nA,(z) = &.exp(-Ailz - Rill 

which obey the Is A-function translation theorem. The Xi  were allowed to vary with 
site but no account was taken of charge-transfer effects. A quadratic approximation 
for the exchangecorrelation energy and potential was used (equation (19)) with 
parameters ao,al,az = -0.185, -225, 3.25 au. This gave an adequate description 
of the Hz binding energy curve over a region of energy spanning - 3 eV from 
the minimum. Wur-centre integrals then contribute to matrix elements of the 
exchangecorrelation potential and these were not always negligible because bond 
lengths can be quite short in high-density hydrogen Such contributions were found 
to be estimated rather accurately by formulae like equation (A4.5). All threecentre 
integrals encounted in the Hamiltonian, the orbital exponent force and Pulay force 
were evaluated using the translation theorems. An orbital basis consisting of one 
single 1s A-function per atom was used throughout. Including 2s and 2p functions 
was found to influence the energy of Hz essentially via a rigid shift of about 0.05 ey  
implying a negligible force correction. This was confirmed in dynamical simulations 
for H, and H,, using one and five basis functions per atom. Differences were 
marginal and no larger than would arise for example on using different m A  variants. 
Box boundary conditions were used with the system conhed by repulsive one-particle 
potentials acting on the nuclei. The functional form of the confining potential was 
taken to be (1x1 - Xb)zexp[y( 1x1 - X,) ]  for 1x1 > X ,  and zero otherwise. Here 
X is the c coordinate of a nucleus. Analogous potentials were applied with respect to 
the y and z coordinates. The box is characterized by its ‘free volume’ V, = 8XbYbZb 
or equivalently the corresponding rs value defined by V, = 4aNrZ/3,  where N 
is the number of atoms. V, is somewhat smaller than the actual volume available 
to the atoms because the walls are not infinitely steep and the boundary conditions 
correspond more nearly to constant pressure than to constant volume. Such boundary 
conditions are natural in cluster calculations using a localized basis, and are the most 
appropriate in connection with free clusters bound by chemical forces, where the 
boundaries are needed only to prevent evaporation during the initial annealing of 
the cluster to a configuration of low total energy. In the case of hydrogen clusters, 
the walls serve to confine the particles and simulate an external pressure. Periodic 
boundary conditions would be more appropriate to the behaviour of bulk hydrogen 
because they give rise to less pronounced surface and size effects. However, the 
behaviour of a finite number of hydrogen atoms confined by walls is interesting in its 
own right and yields useful, complementary information 

The cluster calculations proceeded by first placing the atoms in an assumed (cubic) 
aystal structure and allowing the system to relax to a nearby local minimum. This was 



1068 

done in the simplest possible way via Newtonian dynamics using the Verlet algorithm 
with the proton velocities set to zero after each time step. The result of this procedure 
is shown b r  an H,, duster in figure l(a).  The cluster formed a distorted structure 
comprising four squares on top of one another. The side lengths were uh = 218 au 
and awl = 252 au for the inner and outer squares. The inner squares were d, = 
223 au apart and the inner and outer squares were separated by dOut = 3.91 au This 
structure corresponded to a stable local minimum of the energy with respect to the 
above lengths. An Hs cluster constrained to a cube was found to adopt a side length 
of 222 au so the H,, structure is basically one H8 cube in the centre with two H4 
squares in the outer layers. 

Zijing Lin and J Harris 
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b u r r  1. mica1 mnfipumtions of an HI& cluster confined ty walk. ( Q )  Local minimum 
closest U) a cubic S I N ~ U E .  (b), (c) Snapshots of simulation a1 T = 3300 K and nominal 
r, = 1 5  (b). 0.6 (c). 

Starting from this local minimum the H,6 cluster was heated to a very high 
temperature (-16000 K) and the box dimensions were gradually reduced until the 
free volume corresponded to 1; = 1.5 (wall dimensions X,, = Y = Zp/2 = 4.84 au). 
The system was then quenched down to a temperature of -3800 K, corresponding 
to a mean classical kinetic energy of roughly the zero-point energy of the proton 
motion. After equilibration for a few thousand time steps, statistics were collected 
over a further So00 time steps. The masses chosen for the orbital exponents and 
site demity parameters ai, X i  in the Lagrangian, equation (7), were 220 and 160 au, 
respectively. This choice gave a maximum kinetic energy of the a - X system of 
2x au indicating that the propagation proceeded close to electronic adiabaticity. 
It was found possible to propagate with a time step of A = 20 au, which is very much 
larger than would be possible in plane-wave methods with such rapid nuclear motion. 
This advantage accrues because the auxiliary variables that are propagated along with 
the nuclear positions are merely exponents and change relatively slowly with time 
whilst in the cp method plane-wave coefficients are propagated that change rapidly 
with time. The simulation was run in principle microcanonically but a small heating 
effect arose because particles at the walls propagated slightly into the classically 
forbidden region and tended to reflect with a too large energy (a consequence of 
the large time step). The heating effect was controlled by setting an upper limit for 
the ldnetic energy of a reflected particle (five times the mean thermal energy of the 
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system). On the rare occasions this limit was exceeded, the particle's speed vias cut 
down by 30%. The average temperature for the simulation was T = 3300 K, with 
RMS temperature fluctuation 

AT \/(T2)t - - 450 K. 

The box dimension and interparticle separations were then scaled down to correspond 
to a higher density of r, = 1.1 and reequilibrated at 3ooo K for several thousand 
time steps. Statistics were then collected for a further So00 time steps. This procedure 
was then repeated for r, = 0.9 and r, = 0.6. At the very highest density, r, = 0.6, 
the dynamical fluctuations were fast and it was found necessary to reduce the time 
step to A = 10 au. 

r IO.".) I (a.".) 

Figure Z Interatomic distance disuibution, fi(r), OI Hv. (a) P, = 1.5 (full cluve), 
r. = 1.1 @token rum), r, = 0.9 (dotted curve). (b) The same 631 r, = 0.6. 

Some data from these simulations are displayed in figures 1 and 2 Figure l(b) 
shows a snapshot of particle positions at the lowest density, rs = 1.5, and illustrates 
that a molecular 'phase' forms at this density. The atoms formed molecules 
immediately during the initial anneal and these remained quite rigid throughout 
the subsequent simulation, indicating that the molecular 'phase' is very stable at 
tbh density. The mean bond length was 1.44 au, identical to that of the isolated 
molecule, with an RMS fluctuation of a16 au. A tendency of the molecular bond axes 
for neighbouring molecules to orient mutually at right angles was noticeable (one such 
case is apparent in the snapshot in figure l(b)). The full curve in figure x u )  shows 
the bond distance distribution, b(r) ,  defined such that 4?i?b(r)dr gives the average 
number of particles whose distance from a given particle is between T and T + dr. 
The distribution displays a sharp fust peak at r = 1.44 au that integrates to unity, 
the coordination of the molecular phase, and is well separated from a broad feature 
centred at T = 4.8 au that arises from atoms in different molecules. The distributions 
of intermolecular distances (not shown) display features that can be identilied with 
the shorter and longer box dimension, indicative of repulsive interactions between 
the molecules. As the density increases, the intermolecular repulsion strengthens, the 
particles are squeezed closer to the walls and features in the distance distributions 
sharpen correspondingly. The leading peak in b( r )  sharpens considerably and shifts 
slightly inwards implying a shortening of the bond length with increasing density. 
This is evident in figure 2(a), where the full, broken and dotted curves refer to 
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r, = 1.5,l . l  and 0.9 respectively. The mean bond length was found to be 1.38 
and 1.34 au with mean square fluctuations of 0.15 and 0.13 au at rs = 1.1 and 
0.9, respectively. A similar behaviour was found by Ceperley and Alder (1987) in 
their quantum Monte Carlo study of the molecular phase of bulk hydrogen. On 
further increase of the HI, density, to a nominal r, = 0.6, a distance distribution 
is found (figure 2(b)) that is quite different from those at lower density. The first 
peak is again very clearly defined, but the coordination is now 1.5 rather than 1. 
The reason for this is evident in figure l(c), which shows a snapshot of the atomic 
positions. The atoms have arranged themselves not in a close-packed structure, as 
one might have expected at such high density, but in four chains of four atoms each 
with short and longer distances within and between the chains. The two outer atoms 
in a chain have mrdination 1, the inner ones coordination 2, accounting for the 
observed average coordination of 1.5. The cham are very stable, as is clear from 
the sharp-peaked structure of b( r). This was particularly evident in a dynamical 
visualization. Thermally induced buckling was observed to heal very quickly and on 
no occasion was transfer of atoms between chains observed. The chains were strongly 
repelling and were held in place by the walls of the cell. The mean bond length 
within the chains was 1.26 au with RMS fluctuation 0.11 au. The distance between tbe 
inner atoms in a chain was slightly shorter than for the outer atoms. Interestingly, a 
detailed theoretical study of metallic hydrogen under pressure prowran et ai 1972) 
predicted that filaments arranged on triangular or square lattices should be preferred 
at lower pressure, with compact structures gaining stability only at very high pressure. 
Recent work (Barbee et a1 1989, Hohl ef ai 1992) has shown also a tendency towards 
chain formation and filamentary structure, in broad agreement with the earlier study. 
The chain structure we find for HI, may be a feature of the rectangular pressure cell 
employed, but nevertheless was preferred to higher-mrdination structures, such as 
in figure l(a). This suggests that filament formation in hydrogen systems is a result 
of local chemical effects rather than long-range forces. 

(4 (b )  
Figure 3 Snapshot of a simulalion of an Hlrs duster “ b e d  by ualls at T = Moo K 
and (a) r, = 1.5, (b) rs = 1.1. 

For HI,, all atoms are on the surface of the cluster and the behaviour is strongly 
influenced by the particle-wall interaction. Figures 3 and 4 show some preliminary 
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data for a cluster with 128 atoms where the interparticle interaction is relatively more 
important The cluster was prepared as for H16, annealed and moled to T -3O00 K 
After equilibration, statistics were compiled for 2ooo further time steps at which 
time the distributions were found to be stable (in fact, distributions changed little 
beyond MO time steps). The temperature remained close to 3ooo K with mean 
square fluctuation AT -210 K Figure 3 shows snapshots of the particle positions 
for nominal densities r, = 1.5 and 1.1. At the smaller density, the state is dearly 
molecular and virtually all the H atoms are bound in pairs (the criterion for drawing in 
a bond is that the distance between two atoms should be < 1.9 au). The bond distance 
distribution, b(r), shown in figure 4@), is similar to that found for H16, displaying a 
broad maximum centred about the intramolecular distance, but the leading peak is 
broader than one would expect on the basis of the gas-phase pair interaction between 
hydrogen atoms. The mean bond length is 1.42 au with RMS fluctuation 0.23 au. This 
is qualitatively consistent with the strongly modified pair interaction found by Ceperley 
and Alder (1987) for the molecular phase of hydrogen under pressure, and with the 
experimental observation of a softened vibron with increasing density (Hemley and 
Mao 1988, Lorenzana el a1 1989). The weak feature at T - 3.8 au reflects the distance 
distribution for atoms in different molecules. The intermolecular distance is slightly 
smaller than for H,, because the larger system has a smaller surface-to-volume ratio 
and so is more dense at the Same nominal rr. 

I (a.".) ?(*A) 

Figure 4 lnlentomic distance distribution, b(r). of Hm. (a) r, = 15 (full c m ) ,  
r, = 1.1 (broken curve). (b)  Leading peak for r, = 1.1. ?he broken c u m  gves the 
mntribulion of triangles, the dotted curve all other microstructures. 

The molecular 'phase' of persists to high nominal density and at rS = 1.1 all 
atoms remained paired, with no detectable bond breaking. This is not the case for 
the larger cluster, as is clear in the snapshot shown in figure 3(b), which is typical for 
the simulation. A rich variety of microstructures is observed, singles, pairs, triads and 
chains that remained intact for relatively long times at the simulation temperature of 
3ooo K Unsurprisingly, the bonddistance distribution, b ( r )  (figure 4(b)), does not 
fall to zero between first- and second-nearest-neighbour peaks. Integrating the leading 
peak up to the first minimum gives 1.25, showing that, although the state is clearly 
not molecular, a low coordination is preferred, as for H,, at T$ = 0.6. The leading 
peak includes contributions from several microstructures and is characterized by a 
substantial number of very short bonds that were not found in the HI, simulations. 
The origin of the short bonds is evident in figure 4(b), where we show the relative 
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mntribution of triangular (broken curve) and other (dotted curve) microstructures to 
the leading peak in b( r). (A triangular structure was declared if a single H atom 
bonded to two neighbours with bond distances of less than 1.3 a y  and the largest 
angle in the triangle thus formed was less than XI'.) As the snapshot in figure 3(b) 
illustrates, triangles were very prevalent in the simulation, amounting to 43% of all 
bonds contributing to the leading peak, and were responsible for practically all the 
short bonds. Short bonds were found also in Ceperley and Alder's (1987) quantum 
Monte Carlo simulations for the (unstable) molecular phase of hydrogen at high 
density, but appear to have been absent in a standard Car-Parrinello simulation using 
64 atoms and periodic boundary conditions (Hold el al 1992). Chin structures were 
observed in this simulation, and are common in the cluster simulation, preferentially 
lining the walls. AIignment of these chains across the walls is responsible for the 
rather sharp edge in b( r) at r ,., 7.2 au, which is close to the smaller wall dimension. 
A complex microstructure in the H,, cluster is perhaps to be expected in View of 
the tinding of Brovman et af (1972) that many quite different structures of bulk 
hydrogen lie close in energy. However, it is possible that the structural features we 
find are strongly influenced by charging effects that cannot be tracked properly using 
a trial density that displays local charge neutrality. This p i n t  is currently under 
investigation. 

Zjing Lin and J Harris 

u(w4 "(W 
Figure 5. Fourier transform of velocity autommlation function: (a) HI6 for nominal 
r, = 0.6 (full "e), 0.9 (chain "e), 1.1 (broken curve), 1.5 (dotted curve); (6) HI% 
for nominal r, = tl (broken wrve), 15 (full cum). 

Dynamical information from the simulations is shown in figure 5 where the 
spectral density 

is plotted against frequency, w.  Here, g ( t )  is the velocity autocorrelation function 

where the sum NIE over all atoms, i, of total number N .  The ensemble average is 
defined by 
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where Nt is the number of time steps with t ,  = nAt. The window function W(t) = 
cos( ?rt /2T) suppresses finitetime sampling oscillations. Additional damping of 
oscillations due to noise was achieved by broadening the spectra using a Gaussian of 
width -50 cm-’. Spectra for HI, are shown in figure 5(a). At the lowest density, 
r, = 1.5, two features are evident at low and high energy and due respectively to 
rotations and to intramolecular vibrations, as exemplified by the frequencies nwb and 
n, that are marked on the figure. The former k the classical vibration frequency 
of a hydrogen molecule, the latter is the rotation frequency of an y unit having 
thermal energy. As the density increases the confinement of the particles inhibits 
transport and quenches rotational motion. The rotational peak then broadens and 
shifts upwards in frequency due to the ‘confinement’ of the rotational coordinate of 
one H, unit via its interactions with other units (i.e. the rotational motion tends to 
become ‘librational’). At the higher density of r, = 0.9 the vibrations and librations 
mix strongly to form a broad band of frequencies Fmally, below the transition to 
the atomic %hain phase’, all resemblance to the free molecular spectrum is lost and 
two new peaks appear, at - 2.8 and 1.8 x Hz, respectively. The high-frequency 
peak is due to ‘buckling’ vibrations and is indicative of the strong interchain and 
chain-wall repulsion. The lower-frequency peak is due to intrachain vibrations. The 
spectral density for the lowdensity H,, simulation (figure S(b)) is quite similar to 
that found for HI, and symptomatic of a molecular phase. Unsurprisingly in view 
of the rich variety of microstructures found, the higher density spectrum displays no 
readily identifiable features. 

6, Summary and concluding remarks 

In this paper we have presented a method for carrying out molecular-dynamio 
calculations in systems with chemical interactions. The method is similar in spirit 
to the method of Car and hrrinello (1985), but differs in two respects. Forces 
are drawn from a functional that has the same stationary points as the Kohn- 
Sham functional, but is defined on function space. This allows the use of simple, 
approximate representations for the density, such as sums over spherically symmetric 
site densities. The one-particle Schrodinger equation is solved using an E A 0  orbital 
basis of A-functions closely related to SOS. These functions obey a global translation 
theorem, enabling multi-centre integrals to be reduced to manageable numbers of 
singlecentre integrals. Exponents in the orbital and density basis were optimized 
dynamically. The elements of the method were examined in connection with hydrogen 
clusters and first-row dimers. For hydrogen, an orbital and a density basis consisting of 
a single exponential per atom were found sufficiently accurate. Through the first row, 
an orbital basis of ‘double zeta’ quality (two A-functions per atom-occupied atomic 
orbital), and a density basis consisting of two exponentials, one each for core and 
valence, was found adequate. All-electron and frozen-core versions of the method 
were found to give very similar results. 

Explicit simulations for HI, and HIS illustrated how our MD scheme works in 
practice and gave valuable information on dynamical aspects, such as choice of 
appropriate masses for the auxiliary variables. It was found that mass ratios chosen 
in small clusters to maintain adiabaticity of the nuclear motion were transferrable to 
larger systems and propagation over long time periods was possible with negligible 
heating of the auxiliary system. Because the exponents vary only weakly with the 
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nuclear locations, stable, near-adiabatic propagation was possible using a time step 
dictated essentially by the rapidity of the nuclear motion. With appropriate choices for 
the auxiliary masses, a simulation with time step A was stable provided vmuA < 0.1, 
where vmax is the maximum frequency of the nuclear motion (cf. the spectra in 
figure 5). In general, we would expect the time step required for stable propagation 
to be much larger than in an equivalent Car-Parrhello calculation, where rapidly 
varying plane-wave coefficients are propagated dynamically. For atoms that can be 
treated with a small plave-wave cut-off, this advantage is more than off-set by a greater 
mu requirement per time step because of the need to evaluate a large number of 
matrix elements and diagonalize a large matrix. The main advantage of a localized- 
orbital-based method is its ability to treat strong potentials. The hydrogen atom can 
be described adequately by a single Is orbital, whereas a planewave cut-off of at 
least 36 Ryd is needed (Barbee er al 1989). For the central atoms of the 6rst row 
even larger cut-offs are needed even when a pseudopotential k used. As we noted in 
section 4, within the present method it is easier to treat the dimers q-N,  than Liz. 
The converse is of course true with plane-wavebased methods. 

Although our experience with actual simulations is limited currently to hydrogen 
clusters, there seems little doubt that the method will prove accurate and practicable 
for atoms through the first row, and probably throughout the periodic table. The mu 
requirement is determined by the number of three-centre integrals that are needed in 
matrix element evaluation. "his depends on the number of basis orbitals per atom, 
the range of the orbitals and the density of the system. A 'double zeta' orbital basis 
(two A-functions per atom-occupied atomic orbital) is required, but one exponent is 
large, limiting the number of overlap and allowing orbital contractions if matrices 
become too unwieldy. A density basis of atom-centred, spherically symmetric site 
densities tends to give too large bond energies for bonds associated with a substantial 
intra-atomic density polarization. However, even in these cases, the forces acting 
in the bonding environment were well described. It would appear that fine tuning 
of the density basis is not necessary for most systems of interest On invoking the 
frozenare approximation, forces can be derived from a functional of the valence 
density only, for which a representation in terms of a single A-function per atom is 
adequate throughout the first row. 

Zijing Lin and J Harris 

Appendix 1. Fkozen-core approximation 

The polarization of the atomic cores and concomitant back-polarization of valence 
orbitals has usually only a marginal influence on the interactions and can be 
neglected. This is done by invoking the frozenare approximation whereby the 
core wavefunctions, IcJ, are assumed to maintain their atomic form throughout. The 
trial site densities in equation (4) are then sums of k e d  core and variable valence 
densities, nf = nf + n:,, and the sum over sites can be written n, = nc + n, where 
the core density of the system, n,, varies only by rigid translations of the individual 
core densities as the atoms move. On substituting into equation (6) and making the 
additional assumption that the core densities on different sites do not overlap, the 
energy reduces to a function of the valence density and valence orbital exponents, 
xi, ffi, 
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(AI. 1) 

where the sum of eigenvalues runs over only the valence shell, dv(z) is the Coulomb 
potential corresponding to the valence density, and Z: the net charge of the ith core. 
The Hamiltonian and overlap matrix elements between valence orbitals, lq), must 
be corrected to incorporate the orthogonality of these orbitals to the cores, 

H i j  + xj - c e t S ; b S k j  Oij -+ Oq. :J - c S i k S k j  (A1.2) 

where H b  and O:j are matrix elements taken with the unorthogonalized valence 
orbitals, E: are the atomic core eigenvalues and Si, I (viIck). With these definitions 
the X and Q forces are given by the same formulae as for the allelectron m e  
(equation (9)), and the forces governing the motion of the nuclear coordinates can 
be written 

k k 

Y 

VRkEv(Xi,ai,Ri) = ~ Z , C ~ { V R , [ H i j  - c,Oij]}Cj'  
n 

The appearance of the core density in equations (Al.l) and (A1.3) arises from 
the non-linear dependence of the exchangecorrelation energy and potential on the 
total density, n,, which gives rise to a coupling between the valence and core densities 
that is calculationally inconvenient. Since core penetration by the valence orbitals is 
in general fairly weak and changes little as the nuclei move, the contribution of this 
mupling to the forces is usually unimportant and can be eliminated by invoking a 
description in which the core and valence densities appear separately. The valence- 
only functional 

" 
J {  Ev(Xi,ai,Ri) = EZnC,!'HijCj" - d z  n,(z) ;&(z) 

n 

(A1.4) 

where the eigenvalues are calculated with exchangecorrelation potential V,(z) E 
p , [n , ( z ) ]  + V:, with V: a stiff core potential, gives the energy of the valence 
electrons alone subject to the external potential V, + V, + dC + V i  of the nuclei 
and cores and the orthogonality constraints in equation (2). An appropriate choice for 
the exchangecorrelation potential of the core is V:(z) I p,[n"(z)] - p,[n:'(z)], 
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where nd and are the total and mlence densities of the neutral atom. The X and 
01 forces derived from equation (4) are again as given in equation (9), and the forces 
on the rigid cores are given by 

Y 

VRk E"( A;, a; ,  Ri )  = 6% C,"{ VRk [ H i j  - E ,  Oij]}Cj" 
n 

The above formulae assume mnishing overlap of core functions on adjacent sites 
but can be used also when the cores overlap weakly provided account is taken of 
the main consequence of core overlap, which is the Pauli repulsion due to interacting 
closed shells. The Pauli repulsion between any two cores can be estimated via additive 
core repulsion terms (Harris 1985). For two s cores IC;), lcj), for example, the direct 
core-cnre pair potentials are 

S v j  e -2(cjIcj)(c;lx + V,lcj) W-6)  

where r/; and l$ are the atomic potentials. If the core orbitals are represented by 
A-functions the potential integrals can be evaluated analytically via 

Appendix 2. Analytic evaluation of overlap and kinetic matrix elements 

The expansion theorems obeyed by the A-functions are given by Wter and Steinborn 
(1980) and further numerical properties and the evaluation of multi-centre integrals 
are discussed in detail by 'Itivedi and Steinborn (1982). Since some of the formulae 
in these papers are quoted incorrectly (for example, equation (4.10~) of Filter and 
Steinborn should read An, = R, + n2 - n3 t 1, while the kinetic energy integrals in 
Pivedi and Steinborn are incorrect), we reformulate some of the relevant expressions 
and quote explicitly the main formulae we have used to perform integrals needed for 
the evaluation of matrix elements. Using the expansion theorem, the overlap matrix 
for A-functions on different sites is 
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Ma& elements of the kinetic energy can be written 

It can be shown that 

so that 

( n +  I +  I)(" + l ) ( n  - 1  - I)(n - 1 - 2 )  
+ J  (a.)* A n - 2 , L ( a , r ) }  (~2 .4)  

The basic ingredientS needed in calculating 0 i j  and ICij are then the onedimensional 
integrals 

" + l + l  ) (  n ' + I + l  ) 
= c c ( " - l - l - P  n ' - I - I - P  

nt-l-ln-l-l 

P'=U P d  

( - 1 ) p + p ' ( 2 a ) p ( Z p ) p ' ( l ~ +  P+ P)! 
X P!P'!(a + f l ) i ' tPtP't l  

for 21 < 1' 6 21 + 2 



x ( A ~ , L , ( ~ , ~ ) I ~ ~ ( ~ ) I A ~ ; L ; ( P , T ) ) } .  (A3.2) 

The integrals (AnlL,(~,~)IFX(~)IA,;L;(P,~)) are either analytic or can be 
determined to sufficient accuracy using an appropriate integration mesh with only 
a few points. However, very many integrals are needed and so the evaluation of 
three-centre integrals represents a time-limiting step in the calculation. 

Appendix 4. Exchangworrelation matrix elements 

We consider the evaluation of matrix elements ( iIp=l j )  in conjunction with a sum 
over site densities and a polynomial approximation to pa, as in equation (19). Only 
non-diagonal elements with i # j, the hardest case, are considered. The term in 
equation (19) linear in the density then involves three-centre integrals of the form 
(ilnklj). These can be dealt with as for the Coulomb potential and so p e  little 
additional computational cost. The quadratic and cubic terms involve four- and 
fivecentre integrals whose evaluation is unnecessary because of the weakness of the 
overlap of the site densities. If S is a rypical value for the orbital overlap integral then 
the density overlap integrals will typically be of order 9. Consider the contributions 
to the matrix elements which devolve from the quadratic term in equation (19), 

(A4.1) 

The first term on the right-hand side includes all on-site contributions of the form 
(ilntlj) that are of order S compared to (ilnjli). Retaining just this term is correct 
to leading order in S and results in the approximation for the exchangecorrelation 
matrix elements 
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This guarantees a stable simulation and results in, at worst, threecentre integrals of 
a form already dealt with. 

The next level of approximation envisages the additional inclusion of all terms of 
next highest order in the overlap, ie. nominally of order S3, 

(iIP&?* (iIP&)" 

+ (i[2Uzninj -k 3Q3(nfnj f ninf) + " ' l j )  
+ (i12a,(nink + n j n k )  + 3a3(nfnk + nkn:) + .. . l j ) .  (A4.3) 

The Mt set of additional terms is clearly the larger and can be calcuated by using 
the rotation properties of the spherical harmonics to eliminate one dimension in the 
integrals. The remaining two-dimensional quadratures can be performed efficiently 
using a sparce mesh in elliptic coordinates or by reading from preset interpolation 
tables. The weakness of the site-density overlap ensures that only near-neighbour 
sites need be included. The second set of terms involves three-site integrals and 
contributes significantly only when the sites approach closely. Since the interaction 
then will usually be strongly repulsive such configurations will be improbable in a 
thermal ensemble. In general, therefore, we expect these and other terms of higher 
order in the overlap to be negligible. If thii is not the case (as for the high-density 
H systems treated in section 5, where bond lengths are small and close encounters 
relatively frequent), these elements can be calculated by translating U) to site i or 
vice versa and using Wo-dimensional quadrature about the axis i - k (or j - k). 
Alternatively, we can make an estimate of such terms that improves as they become 
larger. In practice, formulae of the form 

( 4 n P k l A  a Iilnflwki (A4.4) 

k # C j  

where 

Nki = (nx,(lz - R k l ) b x , ( l Z -  Ril))/(nx,(lzl)lnx.(Izf)) (A4.5) 

is the overlap factor of the two site densities i and IC, give quite reasonable estimates 
and allow the additional terms to be included as additive corrections to the k = i 
terms already considered. Similarly, terms fourth order in the overlap can be 
estimated via 

{ilnknllj) = (ilnZkY)N,,. (A4.6) 

Alternative ways of dealing with such contributions are available if the site densities 
are represented hy analytical functions that obey a translation theorem. This is the 
case for low-2 elements, where a single A-function can be used, and may be possible 
in general. 
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